При изучении табличного умножения в пределах ста используются переместительный и распределительный законы умножения. Применение переместительного закона проиллюстрировано выше. Использование же распределительного закона поясним на примере умножения числа 6 (рис, 45).
рис. 40
Из рассмотрения этого рисунка видно, как происходит набор шестерок:
Затем включается 5-й ряд:
6 х 2 + 6 х 2 + 6 = 6 х 5 = 30
Полученное произведение (6 х 5 = 30) является опорным для последующих случаев таблицы:
6 х 5 + 6 = 6 х 6 = 36; 6 х 5 + 6 х 2 = 6 х 7 = 42
6 х 5 + 6 х 3 = 6 х 8 = 48; 6 х 5 + 6 х 4 = 6 х 9 = 54
6 х 5 + 6 х 5 = 6 х 10 = 60
При нахождении произведений 3 х 8, 7 х 8 и 9 х 8 множитель 8 можно разложить на 4 + 4; тогда 7 х 8 = 7 х 4 + 7 х 4 = 28 + 28 = 56,
Умножение любого однозначного числа на 9 можно свести к умножению на разность чисел 10 — 1. Равным образом умножение числа 9 на любое однозначное число сводится к умножению разности чисел 10 — 1 на данное число. Этот прием легко показать на классных счетах.
Табличное деление в пределах ста опирается, как было выше показано, на соответствующие случаи умножения.
При изучении табличного деления нет необходимости раскрывать свойства этого действия. Дело ограничивается установлением взаимосвязи между делением и умножением, различением двух видов деления и обобщением их в одно действие деления.