Расстояние в 1 км следует показать на открытой местности, отмерив его либо шагами, либо с помощью рулетки или 10-метровой мерной веревки.
Перед выходом с учениками на местность учитель подбирает вблизи школы подходящее расстояние в 1 км. Очень важно, чтобы оно находилось между двумя хорошо заметными ориентирами и просматривалось на всем протяжении. В крайнем случае, если этих требований соблюсти невозможно, что часто бывает в условиях города, расстояние нужно выбирать так, чтобы ориентиры, которыми оно определяется, были хорошо известны детям. При этом можно допустить,. чтобы расстояние между ориентирами отличалось от 1 км на 30 — 50 м.
Построив детей парами, учитель прежде всего проверяет, хорошо ли они помнят, сколько их шагов содержится в 100 м. Затем выводит их к началу выбранного маршрута. Обратив их внимание на время выхода, учитель поручает двум ученикам (первой паре), считая про себя шаги, отмерить первые 100 м. Выполнив задание, пара уходит в хвост колонны, и следующие 100м отмеряет вторая пара, затем третья и т. д. Когда таким образом будет пройдено 1000м, ученики останавливаются, и учитель сообщает, сколько потребовалось времени на то, чтобы пройти 1 км. Затем он показывает весь пройденный путь, а если это невозможно, называет те пункты, между которыми этот путь пролегает.
Знакомство с километром не должно ограничиться лишь тем случаем, о котором сказано выше. Необходимо показать детям в районе школы еще хотя бы одно расстояние в 1 км. Прибегать при этом снова к отмериванию шагами нецелесообразно. Гораздо полезнее это расстояние определить, как это и делается на практике, по времени, которое необходимо на прохождение 1 км. Эта работа легко может быть совмещена с какой-либо экскурсией.
Знакомство с аром и гектаром. После ознакомления учащихся с единицами измерения площадей земельных участков — аром и гектаром — и со0тношениями
1 а = 100 кв. м; 1 га = 10 000 кв. м
необходимо показать эти меры на местности. Удобнее всего это сделать путем построения прямоугольников, в частности квадратов соответствующих размеров.
Работе по построению таких фигур на местности следует придать практический характер, например, дать задание обозначить физкультурную площадку, разбить цветник, выделить участок для сада и т. п. Чтобы не отвлекать внимания детей от основного, в данном случае от усвоения последовательности операций при построении прямоугольника, можно допустить, чтобы на первых порах прямой угол строился «на глаз» без помощи эккера.
Порядок построения прямоугольника (квадрата) на местности таков: сначала ориентировочно намечается участок, на котором предполагается сделать построение. Затем прокладывают путем провешивания прямую линию и на ней отмеряют отрезок данной длины — первую сторону будущего участка. В концах отрезка под прямыми углами к нему провешивают прямые и на них откладывают другие стороны прямоугольника. Наконец, провешивают последнюю, четвертую сторону участка. Чтобы быть уверенным в том, что построение выполнено правильно, необходимо произвести контрольный замер: измерить последнюю из построенных сторон. Ее длина должна равняться длине первой стороны. В случае большого расхождения (так называемой невязки) работу следует проделать вновь с самого начала, чтобы выявить допущенную ошибку.
Задания на построение прямоугольников на местности можно варьировать. Возможно, например, построение фигуры без предварительного указания длин ее сторон. Когда уже будет известно понятие площади, можно предложить детям построить прямоугольник данной площади. Полезным упражнением является построение квадрата площадью в 1 а (или, как говорят в быту, площадью в одну сотку) с помощью «живых вех»—учащихся, поставленных в вершинах и на сторонах квадрата и обращенных лицом внутрь фигуры. Обозревая построенный таким образом участок, дети получают конкретное представление об аре. Такое построение не требует никаких инструментов, кроме эккера и рулетки, выполняется быстро и служит хорошим дополнением к инструментальным построениям.